Kuwait University Aptitude Test (Review Sheet) by EduKuwait

Real numbers:

1. Div	visibility rules				
2	A number is divisible by 2 if the number ends in an even number		23 <u>8</u> The number 8 is even		
3	A number is divisible by 3 if the sum of the digits is divisible by 3		375 3+7+5= 15 15 is divisible by 3		
4	A number is divisible by 4 if the last 2 digits are divisible by 4		4 <u>12</u> 12 is divisible by 4		
5	A number is divisible by 5 if the number ends in a 0 or 5		585 840 The numbers end in a 0		
6	A number is divisible by 6 if the number is divisible by 2 and 3		48 48 is divisible by 2 and 3		
9	The numbers are divisible by 9 if the sum of the numbers is divisible by 9		756 7+5+6=18 18 is divisible by 9		
10	In numbers divisible by 10 if the number ends in a 0		500 970 the numbers end in a 0		
<u>2. Fra</u>	2. Fractions				
ab + ac = a(b + c)		$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$			
$a\left(\frac{b}{c}\right) = \frac{ab}{c}$		$\frac{a-b}{c-d} = \frac{b-a}{d-c}$			
$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$		$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$			
$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$		$\frac{ab + ac}{a} = b + c$			
$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$		$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}$			
3. Exponents					
$2^0 = 1$		$3^2 * 3^5 =$	$3^{2+5} = 3^7$		
$17^{1} \equiv 17$		$\frac{3^5}{3^2} = 3^{5-2} = 3^3$			
	$\sqrt{4} = 4^{\frac{1}{2}}$	$(3^2)^5 = 3^{2 \times 5} = 3^{10}$			
	$\sqrt[3]{27} = 27^{\frac{1}{3}}$	$3^{25^0} = 3^{21} = 9$ But			
	$((3^{2)^{5})^{0}} = 3^{2*5*0} = 1$				
$9^{-2} = \frac{1}{9^2}$		$\left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)^2$			
$2^5 \times 3^5 = (2 \times 3)^5$		$\frac{3^{-2}}{4^{-5}}$	$=\frac{4^5}{3^2}$		
	o1 ³ 0 (013	$(3)^2$			

$9^{-2} = \frac{1}{9^2}$	$\left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)^2$		
$2^5 \times 3^5 = (2 \times 3)^5$	$\frac{3^{-2}}{4^{-5}} = \frac{4^{5}}{2^{2}}$		
	4-5 32		
$81^{\frac{3}{2}} = 2\sqrt{81^3}$	$\left(\frac{3}{4}\right)^2 = 3^2/4^2$		
4. Square roots			
$\sqrt{225} = 15$ (always non-negative)			
$a, b \ge 0$ for even n			

 $\sqrt[n]{a} = a^{\frac{1}{n}}$

 $\sqrt[n]{ah} = \sqrt[n]{a} \sqrt[n]{h}$

i. e. $\sqrt{x^2} = |x|$ (for both positive and negative numbers)

 $\sqrt[3]{x^3} = x$ (for both positive and negative numbers)

% Change = $\left|\frac{\text{New amount} - \text{Old amount}}{\text{Old amount}}\right| * 100$

For timed electronic exams, visit www.edukuwait.com